

Brief About Pollution Research

Published Quarterly Since 1982. Pollution Research is published in March, June, September and December every year.

POLLUTION RESEARCH is one of the leading environmental journals in world and is widely subscribed in India and abroad by Institutions and Individuals in Industry, Research and Govt. Departments.

Pollution Research is abstracted/covered in:

- Chemical Abstracts, U.S.A.
- SCOPUS
- EBSCO Publishing, U.S.A.
- Cambridge Science Abstracts
- Ecology Abstracts
- Pollution Abstracts
- Eco-Disc CD Rom
- Geological Abstracts
- International Development Abstracts
- Oceanographic Literature Review
- Zoological Records
- Indian Science Abstracts, Niscair, India
- Elsevier's Compendex
- Elsevier's Current Awareness in Biological Sciences
- Elsevier's Encompass
- Elsevier's Geobase

Pollution Research journal is accredited with National Academy of Agricultural sciences, NAAS, India.

Pollution Research journal is covered by SCOPUS.

Pollution Research journal also features in Uhlrich International Periodical Directory, U.K., Gale Directory, U.K. and SAARC directory of periodicals.

Pollution Research is UGC , New Delhi approved journal (No. 38090)

www.envirobiotechjournals.com/journal_details.php?jid=4

Journal Issues

Vol 39, Feb Suppl. Issue, 2020 Vol 38, Issue 4, 2019 Vol 38, November Suppl Issue Vol 38, Issue 3, 2019 Vol 38, August Suppl Issue Vol 38, Issue 2, 2019 Vol 38, March Suppl Issue Vol 38, Issue 1, 2019 Vol 37, Issue 4, 2018 Vol 37, Issue 3, 2018 Vol 37, Issue 2, 2018 Vol 37, May Suppl. Issue 2018 Vol 37, Issue 1, 2018 Vol. 36, Issue 4, 2017 Vol. 36, Issue 3, 2017 Vol. 36, Issue 2, 2017 Vol. 36, Issue 1, 2017 Vol. 35, Issue 4, 2016 Vol. 35, Issue 3, 2016 Vol. 35, Issue 2, 2016 Vol. 35, Issue 1, 2016 Vol 34, Issue 4, 2015 Vol 34, Issue 3, 2015 Vol 34, Issue 2, 2015 Vol 34, Issue 1, 2015 Vol 33, Issue 04, 2014 Vol 33, Issue 03, 2014 Vol 33, Issue 02, 2014 Vol.33, Issue 01, 2014 Vol.32, Issue 04, 2013 Vol.32, Issue 03, 2013 Vol.32, Issue 02, 2013 Vol.32, Issue 1, 2013

Become a fan on Facebook E Follow us on Twitter	VISA
me International Journals Books Environmental Consulting About Us Contact Us S	ubmit Paper Search Journal Article
	Click here to get them!!
	Looking for Past Issues?
	<u>Vol.17, Issue 01, 1998</u>
	Vol.17, Issue 03, 1998
	Vol. 17 Issue 04, 1998
	Vol 18 Issue 02 1999
	Vol.19, Issue 03, 2000
	Vol.20, Issue 01, 2001
	Vol.20, Issue 02, 2001
	Vol.26, Issue 3, 2007
	Vol.29, Issue 1, 2010
	Vol.29, Issue 2, 2010
	Vol.29, Issue 3, 2010
	Vol.29, Issue 4, 2010
	Vol 30 Jssue 2, 2011
	<u>Vol.30, Issue 3, 2011</u>
	Vol.30, Issue 4, 2011
	<u>Vol.31, Issue 1, 2012</u>
	Vol.31, Issue 2, 2012

EM International

Shopping Bag (Items)

Home	International Journals	Books	Environmental Consulting	Abo	ut Us	Contact	٩	
EM International is one of the worlds leading publishers on quality journals of Environmental Science, Ecology, Environmental Engineering and Biotechnology. It publishes three International journals:						Editors Profile! Dr. R. K. Trivedy Dr. R.K.Trivedy former Professor and		
Pollution Research, ISSN# 0257-8050-Quarterly. It is now in 38 th year of publication and is one of the widely circulated and referred journal in the field. It has SCOPUS H index 21.					Head, Department of Environmental Sciences, University of Pune, Pune (Maharashtra),India is presently Director in a National level Environmental services company.			
Ecology, Environment and Conservation, ISSN# 0971-765X-quarterly.								
over the world. It has SCOPUS H index 11. It is now in the 25 th year of publication.								
Asian Journal of Microbiology, Biotechnology & Environmental Sciences, ISSN# 0972-3005-quarterly. Now in to 21 st year of publication. It was in SCOPUS from 2001-2018				Dr. P. K. Wong P.K. Wong has more than 35 years working experience on Environmental				
All journals publish peer reviewed research papers, reviews and topical articles. The journals have an extensive editorial board comprising of leading scientists and we always welcome senior scientists in these fields to send us their resume at (<u>contact@envirobiotechjournals.com</u>) for consideration in the Editorial Boards.			Biotechn received degrees Universit 1977 and	ology/Microbiology his B.Sc. and M.P from The Chinese y of Hong Kong (C d 1979 respectively	/. He hil. CUHK) in /			
All papers are Peer- reviewed.				Read	d Full Profile			
So far above	8000 scientists from all over the wo	orld have publishe	ed their research with us.					

The journals publish research papers/reviews and topical articles in following areas:

- Ecology of grasslands, forests, freshwaters and marine areas
- Biodiversity and Biodiversity conservation.
- Taxonomy as related to ecology from various ecosystems
- Water air and soil pollution
- Water and Wastewater Treatment
- Air Pollution Control
- Solid waste management
- Resource conservation and recycling
- Toxicology and Eco-toxicology
- Human ecology
- Agricultural ecology
- Water resources conservation
- Hazardous waste management
- Microbiology
- Industrial Microbiology and Biotechnology
- Agricultural microbiology and Biotechnology
- Environmental Microbiology and Biotechnology
- Environmental laws
- Climate change
- Carbon markets
- Biochemistry
- Immunology
- Cell Biology
- Genetics

- Pharmacology
- Pharcagnosy
- Medical Microbiology

• Restoration Ecology, any other topic in Botany,Zoology,Microbiology, Env. Sc. & Engg. and Biotechnology

The Journals are abstracted/covered in:

- EBSCO Publishing, U.S.A.
- Chemical Abstracts, U.S.A.
- SCOPUS
- Cambridge Science Abstracts
- Ecology Abstracts
- Pollution Abstracts
- Eco-Disc CD Rom
- Geological Abstracts
- International Development Abstracts
- Oceanographic Literature Review
- Zoological Records
- Indian Science Abstracts, Niscair, India
- Elsevier's Compendex
- Elsevier's Current Awareness in Biological Sciences
- Elsevier's Encompass
- Elsevier's Geobase
- Indian Citation Index
- Index Copernicus

All journals are accredited with National Academy of Agricultural sciences, NAAS, India.

All Journals are covered by SCOPUS.(AJMBES till 2018, rest are confirmed in SCOPUS in 2019).

The journals also feature in Uhlrich International Periodical Directory, U.K., Gale Directory, U.K. and SAARC directory of periodicals.

SUBSCIPTION BASE

The journals are extensively subscribed in large number of countries and in India by:

- Leading universities
- Leading educational institutions
- Engineering and technological institutes
- Government Departments
- Industries' Environment and R&D Departments
- Individual Researchers

Authors of our journals also automatically get an SCOPUS H index or their H index increases once their paper is published in our journals.

PUBLICATION SCHEDULE

'Pollution Research', 'ECOLOGY, ENVIRONMENT AND CONSERVATION' and 'Asian Journal of Microbiology Biotechnology & Environmental Sciences' journals are published in March, June, September & December of every year.

Normally a paper submitted in our journals, if suitable, is published in 3-6 months. The journals regularly cover,

- Environmental news
- Latest standards and Environmental laws
- Book reviews
- Information on conferences and meets
- Comments on research published recently

Home International Journals Books	Environmental Consulting About Us Contact Us	Submit Paper Search Journal Article
Become a fan on Facebook	Follow us on Twitter	VISA

© EM International 2012-2019 | Developed by Eneblur Consulting

P EM Internation	onal		Shoppin	ig Bag (Items)
me International Journals	Books	Environmental Consulting	About Us	Contact
Ilution Research Journal Papers	5			
ssue: Vol 37, Issue 4, 2018				
IETAL CONCENTRATIONS IN MYTILUS GA	LLOPROVIN TH AFRICA	NCIALIS ALONG THE WEST COAST OF		Search Articles Journal Issues
C. SPARKS, J. ODENDAAL, R. TOEFY AND I Get Abstract	R. SNYMAN		<u>Vol 39,</u> <u>Vol 38,</u> <u>Vol 38,</u>	Feb Suppl. Issue, 2020 Issue 4, 2019 November Suppl Issue
REATMENT OF TOFU WASTEWATER USIN KURNIADIE D., WIJAYA D., WIDAYAT D., UM Get Abstract	<mark>ig constr</mark> i Iyati u. Ane	UCTED WETLAND IN INDONESIA) ISKANDAR	Vol 38, Vol 38, Vol 38, Vol 38, Vol 38, Vol 38, Vol 37,	Issue 3, 2019 August Suppl Issue Issue 2, 2019 March Suppl Issue Issue 1, 2019 Issue 4, 2018
VATER QUALITY IN SIAK, A TIDAL BLACK NDONESIA /ULIATI, ETTY RIANI, BAMBANG PRAMUDY	WATER RIV	<mark>er in central sumatera</mark> , Chmad Fahrudin	Vol 37, Vol 37, Vol 37, Vol 37,	<u>Issue 3, 2018</u> <u>Issue 2, 2018</u> <u>May Suppl. Issue 2018</u> <u>Issue 1, 2018</u>
Get Abstract			<u>Vol. 36</u> <u>Vol. 36</u> <u>Vol. 36</u> Vol. 36	<u>, Issue 4, 2017</u> , <u>Issue 3, 2017</u> , <u>Issue 2, 2017</u> Issue 1, 2017
IEMBRANE NWAR MA�RUF, MOHAMMAD AGUS SAL	M AND WISI	NU PRATOPO YUWONO	Vol. 35 Vol. 35	<u>, Issue 4, 2016</u> , <u>Issue 3, 2016</u> , <u>Issue 2, 2016</u>
Get Abstract	LUTION IN F	KLANG SELANGOR, MALAYSIA	<u>Vol. 35</u> <u>Vol 34,</u> <u>Vol 34,</u>	<u>, Issue 1, 2016</u> <u>Issue 4, 2015</u> <u>Issue 3, 2015</u>
AZLAN ABAS, AZAHAN AWANG AND KADAF Get Abstract	RUDDIN AIYI	JB	<u>Vol 34,</u> <u>Vol 34,</u> <u>Vol 33,</u> <u>Vol 33,</u>	<u>Issue 2, 2015</u> <u>Issue 1, 2015</u> <u>Issue 04, 2014</u> <u>Issue 03, 2014</u>
ENVIRONMENTAL MANAGEMENT IN CENT (RASNOYARSK TERRITORY)	RAL SIBERI	A (BASED ON ANALYSIS OF THE	<u>Vol 33,</u> <u>Vol.33,</u> <u>Vol.32,</u>	<u>Issue 02, 2014</u> <u>Issue 01, 2014</u> <u>Issue 04, 2013</u>
Get Abstract	STINIKOVA		<u>Vol.32,</u> <u>Vol.32,</u> <u>Vol.32,</u> Vol.31,	<u>Issue 03, 2013</u> <u>Issue 02, 2013</u> <u>Issue 1, 2013</u> Issue 04, 2012
BACTERIAL ANALYSIS OF DUMP LEACHA DEIR KANOUN RAS EL AIN IN LEBANON AMILAH BORJAC, MARIAM SHAHEEN. MO	TES AND IRI HAMMAD NS	RIGATION WATER FROM A CANAL IN	<u>Vol.31,</u> <u>Vol.31,</u> <u>Vol.31,</u>	<u>Issue 3, 2012</u> <u>Issue 2, 2012</u> Issue 1, 2012
Get Abstract		,	<u>Vol.30,</u> <u>Vol.30,</u> <u>Vol.30,</u>	<u>Issue 4, 2011</u> <u>Issue 3, 2011</u> <u>Issue 2, 2011</u>
			Vol.30, Vol.29	Issue 1, 2011 Issue 4, 2010

Vol.26, Issue 3, 2007

Get Abstract BLOOD MORPHOLOGY AND BIOCHEMISTRY OF DAIRY CATTLE WHEN CHELATE PREPARATION IS INTRODUCED INTO DIETS MAGOMED G. CHABAEV, YUSUP A. YULDASHBAEV, VICTORIA V. TEDTOVA, ZARINA T. BAEVA, VALENTINA S. GAPPOEVA, MARIYA S. GALICHEVA Get Abstract	Vol.20, Issue 02, 2001 Vol.20, Issue 01, 2001 Vol.19, Issue 03, 2000 Vol.19, Issue 01, 2000 Vol.18, Issue 02, 1999 Vol.17, Issue 04, 1998 Vol.17, Issue 03, 1998 Vol.17, Issue 01, 1998
TREATMENT OF ACID MINE DRAINAGE WASTE USING SEDIMENT AS SOURCE OF SULFATE- REDUCING BACTERIA TO REDUCE SULFATES FAHRUDDIN FAHRUDDIN, AS�ADI ABDULLAH AND NURSIAH LA NAFIE Get Abstract	Looking for Past Issues? <u>Click here to get them!!</u>
APPLICATION OF ANTIOXIDANTS FOR OPTIMIZATION OF PRODUCTIVITY AND PROCESSES OF DIGESTIVE METABOLISM OF COWS WITH THE DISTURBANCE OF NUTRITION ECOLOGY MARINA G. KOKAEVA, RUSTEM B. TEMIRAEV, VALERY R. KAIROV, SERGEY I. KONONENKO, SUSANNA K. CHERCHESOVA AND NATALYA A. LYASHENKO Get Abstract	
BIOACCUMULATION OF LEAD (PB) CONTENT IN AVICENNIA MARINA (FORSK.) VIERH AND BRUGUIERA GYMNORRHYZA (L.) LAMK FROM MANGROVE FOREST AREA IN MUARA ANGKE, JAKARTA, INDONESIA MAMAN RUMANTA Get Abstract	
STRUCTURING PROBLEMS IN MANAGING PEOPLE S GOLD MINE IN PALU CITY, INDONESIA: A CASE STUDY IN POBOYA WATERSHED MUHAMMAD ASWADI, ETTY RIANI, BAMBANG PRAMUDYA AND BUDI KURNIAWAN Get Abstract	
THE POTENTIAL USE OF CRUDE PALM OIL WASTES TO IMPROVE NUTRIENT LEVELS IN VEGETABLE PLANTS HASAN BASRI JUMIN, T. ROSMAWATY, AHMAD FAJRI, ANTRI KUATNO, ALVIAN ABARA, ERNITA, SELVIA SUTRIANA, MAIZAR AND M. NUR Get Abstract	
ANTIOXIDANT AND MOLD INHIBITOR IN RATIONS WITH HIGHER AFLATOXIN CONTENT FOR IMPROVING NUTRITIONAL VALUE OF BROILER MEAT SVETLANA F. SUKHANOVA, ANZHELIKA A. BAEVA, LADA A. VITYUK, RUSTEM B. TEMIRAEV, FATIMA F. KOKAEVA AND IRINA R. TLETSERUK Get Abstract	
TRACE METAL TOXICITY, IN PARTS OF CENTRAL INDO GANGATIC PLAIN: A SUSPECT IN CALCULI PATHOGENESIS? M. SHAMIM KHAN, ROOHI IRSHAD, AHM AHMAD, M. BEG AND M. SALMAN Get Abstract	
EFFECT OF CHROMIUM DEGRADING BACTERIA ON DIFFERENTIAL CHANGES IN CHROMIUM REDUCTION WITH RESPECT TO DISTINCT BIOCHEMICAL PARAMETERS ANISETTI SIVA SANKAR AND ANTARYAMI PRADHAN Get Abstract	

REVISE STUDY OF CONCENTARATION OF POLLUTANT CO IN DELHI CITY MONIKA SINGH, S.P. MAHAPATRA AND S. NIGAM
Get Abstract
CHARACTERISTICS OF MINE WATER AND ITS UTILIZATION H. L. YADAV AND A. JAMAL
Get Abstract
REMOVAL OF MALACHITE GREEN OXALATE DYE FROM AQUEOUS SOLUTIONS USING BARK OF POLYALTHIA LONGIFOLIA AS A BIOSORBENT: ADSORPTION AND KINETIC STUDIES
GHANESH GAUR AND SAPNA SHARMA
Get Abstract
USE OF WASTE MATERIALS AS FILLER IN BITUMENIOUS MIX: A REVIEW ARASADA RAJMOHAN, A. VIJAYAKUMAR AND B.P.R.V.S. PRIYATHAM
Get Abstract
<u>STUDIES ON HETEROTROPHIC BACTERIA AND TOTAL COLIFORMS IN RELATION WITH</u> ENVIRONMENTAL PARAMETERS OF WATER IN GURUPUR ESTUARY, OFF MANGALURU, KARNATAKA, INDIA
CHANDRASHEKAR KADEMANE, MRIDULA RAJESH, K. M. RAJESH AND K. VANDANA
Get Abstract
<u>A REVIEW ON DESIGN BASIS FOR CONSTRUCTED WETLANDS FOR WASTEWATER</u> <u>TREATMENT AND K-C MODEL</u> KRUTI JETHWA AND P.K. CHAUDHARI
Get Abstract
ACUTE TOXICITY OF CYPERMETHRIN TO FRESHWATER FISH LABEO ROHITA AND MYSTUS VITTATUS: A COMPARATIVE EVALUATION BETWEEN TECHNICAL AND COMMERCIAL FORMULATION
RAJIB MAJUMDER, SUCHISMITA CHATTERJEE (SAHA) AND ANILAVA KAVIRAJ
Get Abstract
ORGANIC FLAME RETARDANT INDUCED OXIDATIVE STRESS IN VARIOUS ORGANS OF FRESHWATER FISH CHANNA PUNCTATUS PRINCE SHARMA, POOJA CHADHA AND MANDEEP KAUR
Get Abstract
<u>CORROSION STUDY ON ECOFRIENDLY JUTE FIBER REINFORCED TERNARY BLENDED</u> <u>CONCRETE</u> N.K. AMUDHAVALLI AND S. PRABAVATHY
Get Abstract
GROUND WATER QUALITY STUDY OF UPPER BERACH RIVER BASIN, RAJASTHAN STATE DHEERAJ KUMAR, P.K. SINGH, MAHESH KOTHARI, R.S. SINGH4 AND K.K. YADAV
Get Abstract

<u>IMPACT OF INDUSTRILATION ON SURFACE WATER IN AND AROUND NEELACHAL ISPAT</u> <u>NIGAM LIMITED (NINL), KALINGA NAGAR, JAJPUR DISTRICT, ODISHA</u> S.S. PANDA, M.R. MAHANANDA AND M. CHHURIA	
Get Abstract	
OCCURRENCE OF CHROMIUM IN GROUND WATER IN AND AROUND A CHARGE CHROME	
<u>Plant</u> R.K. DAS, A. SWAIN, S. HOTA AND B.B. KAR	
Get Abstract	
A REVIEW FROM GREENHOUSE EFFECT TO CARBON FOOTPRINT HIMANI MAHESHWARI, UMESH CHANDRA2 AND KAMAL JAIN	
Get Abstract	
A MIXTURE OF SOIL AND DUNG PRODUCING MORE VOLTAGE THAN SOIL OR DUNG ALO	<u>1E:</u>
ATULONA DATTA, SHAILJA BAJAJ, MALAVIKA BHATTACHARYA, SRABANI KARMAKAR, SAYANTAN BANERJEE AND SIRSHENDU CHATTERJEEA	
Get Abstract	
ROLE OF WATER PURIFICATION AND WSN IN ORGANIC FARMING RICHA KHARE, AJITA PATHAK AND SMRITI	
Get Abstract	
ESTIMATION OF HEAVY METALS ALONG ROAD AND DISTANCE WITH ROAD AT NATIONAL HIGHWAY BETWEEN CHITTORGARH TO UDAIPUR, RAJASTHAN, INDIA N. K. SHARMAA, N. RAI AND A. PANCHAL	:
Get Abstract	
MICROBIAL DEGRADATION OF CRUDE-PETROLEUM-OIL: FACTORS AND STRATEGIES AFFECTING THE BIOREMEDIATION PROCESS RAJANBIR KAUR, ARPNA KUMARI AND RAJINDER KAUR	
Get Abstract	
IMPACT OF INDOOR AIR POLLUTION ON THE RESPIRATORY HEALTH OF ADULT WOMEN	<u>DF</u>
UTKARSHA PATHAK, N.C GUPTA, J.C SURI AND A. SAXENA	
Get Abstract	
A COMPREHENSIVE STUDY OF TREATMENT TECHNOLOGIES FOR REUSE OF GREYWATE VANDANA SINGH, AMARJEET KAUR AND N.C. GUPTA	<u>R</u>
Get Abstract	
EXPERIMENTAL INVESTIGATIONS ON POLLUTION LEVELS FROM SUPERCHARGED PARTIALLY ADIABATIC DIESEL ENGINE WITH TAMARIND BIODIESEL BLENDED WITH DIETHYL ETHER	
N. VENKATESWARA RAO, M.V.S. MURALI KRISHNA, R. PERAIAH CHOWDARY, N. JANARDHA V.V.R. SESHAGIRI RAO AND T. RATNA REDDY	۸N,
Get Abstract	

Get Abstract	
OMPARATIVE PE	RFORMANCE AND EMISSION CHARACTERISTICS OF METHYL ESTERS
ROM WASTE COC	KING OIL AND USED PALM OIL USING A SOLID ACID CATALYST
ABDUL BASHEEP	R AND A. ANITHA
Get Abstract	
EASUREMENT TH	IERADIOACTIVITY FOR SOME ELEMENTS 40K, 238U, 232TH AND 222RN
OR SAMPLES IN S	SOME SELECTED AREAS OF BABYLON GOVERNORATE, IRAQ
HALID S. JASSIM	AND NASSER H. JASSIM
Get Abstract	
OctAbolidot	
	IZATION ON THE NEST SELECTION BY THE HOUSE SPARROW, PASSER
OMESTICUS	· · · · · · · · · · · · · · · · · · ·
ALAJI SUNDARAN	IAHALINGAM AND BASKARAN SOMASUNDARAM
Get Abstract	
ATAI YSTS	ENDED GASOLINE WITH CATALITIC CONVERTER WITH DIFFERENT
H. INDIRA PRIYAD) DARSINI1, M.V.S. MURALI KRISHNA, IPSITA MOHANTI, Y. NAGINI, S.
IARASIMHA KUMA	R AND K. KISHOR
Get Abstract	
Get Abstract	
Get Abstract	ON OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA
Get Abstract	ON OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA
Get Abstract PHYTOREMEDIATION NDICA IN BAREILL NKANSHA TRIPATH	ON OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA
Get Abstract HYTOREMEDIATIC NDICA IN BAREILL KANSHA TRIPATH Get Abstract	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA
Get Abstract HYTOREMEDIATIO IDICA IN BAREILL KANSHA TRIPATH Get Abstract	ON OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA
Get Abstract HYTOREMEDIATIC IDICA IN BAREILL KANSHA TRIPATH Get Abstract XTRACTION OF C	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL
Get Abstract HYTOREMEDIATION IDICA IN BAREILL KANSHA TRIPATH Get Abstract XTRACTION OF C IQUEFACTION OF	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL WET BIOWASTES
Get Abstract	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL WET BIOWASTES I, P. SUBRAMANIAN, S. PUGALENDHI1, S. AVUDAINAYAGAM AND D.
Get Abstract	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL WET BIOWASTES I, P. SUBRAMANIAN, S. PUGALENDHI1, S. AVUDAINAYAGAM AND D. NS
Get Abstract	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL WET BIOWASTES I, P. SUBRAMANIAN, S. PUGALENDHI1, S. AVUDAINAYAGAM AND D. AS
Get Abstract	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL WET BIOWASTES I, P. SUBRAMANIAN, S. PUGALENDHI1, S. AVUDAINAYAGAM AND D. NS
Get Abstract	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL WET BIOWASTES I, P. SUBRAMANIAN, S. PUGALENDHI1, S. AVUDAINAYAGAM AND D. S BIOLOGICAL STATUS OF GRAY FOREST SOILS OF WESTERN CAUCASUS
Get Abstract	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL WET BIOWASTES I, P. SUBRAMANIAN, S. PUGALENDHI1, S. AVUDAINAYAGAM AND D. S BIOLOGICAL STATUS OF GRAY FOREST SOILS OF WESTERN CAUCASUS BY CADMIUM, ZINC, MOLYBDENUM AND SELENIUM
Get Abstract	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL WET BIOWASTES I, P. SUBRAMANIAN, S. PUGALENDHI1, S. AVUDAINAYAGAM AND D. S BIOLOGICAL STATUS OF GRAY FOREST SOILS OF WESTERN CAUCASUS BY CADMIUM, ZINC, MOLYBDENUM AND SELENIUM DLESNIKOV, KAMIL SHAGIDULLOVICH KAZEEV, YULIYA VIKTOROVNA
Get Abstract	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL WET BIOWASTES I, P. SUBRAMANIAN, S. PUGALENDHI1, S. AVUDAINAYAGAM AND D. AS BIOLOGICAL STATUS OF GRAY FOREST SOILS OF WESTERN CAUCASUS BY CADMIUM, ZINC, MOLYBDENUM AND SELENIUM DLESNIKOV, KAMIL SHAGIDULLOVICH KAZEEV, YULIYA VIKTOROVNA VA VIKTOROVNA DENISOVA, EVGENIA VALERYEVNA DADENKO,
Get Abstract	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL WET BIOWASTES I, P. SUBRAMANIAN, S. PUGALENDHI1, S. AVUDAINAYAGAM AND D. NS BIOLOGICAL STATUS OF GRAY FOREST SOILS OF WESTERN CAUCASUS BY CADMIUM, ZINC, MOLYBDENUM AND SELENIUM DLESNIKOV, KAMIL SHAGIDULLOVICH KAZEEV, YULIYA VIKTOROVNA NA VIKTOROVNA DENISOVA, EVGENIA VALERYEVNA DADENKO, SEEVNA MYASNIKOVA AND DZHEMALDIN RUSLANOVICH TATLOK
Get Abstract	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL WET BIOWASTES I, P. SUBRAMANIAN, S. PUGALENDHI1, S. AVUDAINAYAGAM AND D. AS BIOLOGICAL STATUS OF GRAY FOREST SOILS OF WESTERN CAUCASUS BY CADMIUM, ZINC, MOLYBDENUM AND SELENIUM DLESNIKOV, KAMIL SHAGIDULLOVICH KAZEEV, YULIYA VIKTOROVNA VA VIKTOROVNA DENISOVA, EVGENIA VALERYEVNA DADENKO, SEEVNA MYASNIKOVA AND DZHEMALDIN RUSLANOVICH TATLOK
Get Abstract	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL WET BIOWASTES I, P. SUBRAMANIAN, S. PUGALENDHI1, S. AVUDAINAYAGAM AND D. S BIOLOGICAL STATUS OF GRAY FOREST SOILS OF WESTERN CAUCASUS BY CADMIUM, ZINC, MOLYBDENUM AND SELENIUM DLESNIKOV, KAMIL SHAGIDULLOVICH KAZEEV, YULIYA VIKTOROVNA VA VIKTOROVNA DENISOVA, EVGENIA VALERYEVNA DADENKO, SEEVNA MYASNIKOVA AND DZHEMALDIN RUSLANOVICH TATLOK
Get Abstract	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL WET BIOWASTES , P. SUBRAMANIAN, S. PUGALENDHI1, S. AVUDAINAYAGAM AND D. S BIOLOGICAL STATUS OF GRAY FOREST SOILS OF WESTERN CAUCASUS BY CADMIUM, ZINC, MOLYBDENUM AND SELENIUM DLESNIKOV, KAMIL SHAGIDULLOVICH KAZEEV, YULIYA VIKTOROVNA VA VIKTOROVNA DENISOVA, EVGENIA VALERYEVNA DADENKO, SEEVNA MYASNIKOVA AND DZHEMALDIN RUSLANOVICH TATLOK
Get Abstract	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL WET BIOWASTES I, P. SUBRAMANIAN, S. PUGALENDHI1, S. AVUDAINAYAGAM AND D. AS BIOLOGICAL STATUS OF GRAY FOREST SOILS OF WESTERN CAUCASUS BY CADMIUM, ZINC, MOLYBDENUM AND SELENIUM DLESNIKOV, KAMIL SHAGIDULLOVICH KAZEEV, YULIYA VIKTOROVNA VA VIKTOROVNA DENISOVA, EVGENIA VALERYEVNA DADENKO, SEEVNA MYASNIKOVA AND DZHEMALDIN RUSLANOVICH TATLOK HECULAR IMPRINTING POLYMERS IN MICROEMULSION FOR THE ACHITE GREEN FROM WATER
Get Abstract	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL WET BIOWASTES I, P. SUBRAMANIAN, S. PUGALENDHI1, S. AVUDAINAYAGAM AND D. S BIOLOGICAL STATUS OF GRAY FOREST SOILS OF WESTERN CAUCASUS BY CADMIUM, ZINC, MOLYBDENUM AND SELENIUM DLESNIKOV, KAMIL SHAGIDULLOVICH KAZEEV, YULIYA VIKTOROVNA VA VIKTOROVNA DENISOVA, EVGENIA VALERYEVNA DADENKO, SEEVNA MYASNIKOVA AND DZHEMALDIN RUSLANOVICH TATLOK PLECULAR IMPRINTING POLYMERS IN MICROEMULSION FOR THE ACHITE GREEN FROM WATER BHAWANI AND AMELIA LACCY JEFFREY KIMURA
Get Abstract	DN OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL WET BIOWASTES I, P. SUBRAMANIAN, S. PUGALENDHI1, S. AVUDAINAYAGAM AND D. S BIOLOGICAL STATUS OF GRAY FOREST SOILS OF WESTERN CAUCASUS BY CADMIUM, ZINC, MOLYBDENUM AND SELENIUM DLESNIKOV, KAMIL SHAGIDULLOVICH KAZEEV, YULIYA VIKTOROVNA VA VIKTOROVNA DENISOVA, EVGENIA VALERYEVNA DADENKO, SEEVNA MYASNIKOVA AND DZHEMALDIN RUSLANOVICH TATLOK DLECULAR IMPRINTING POLYMERS IN MICROEMULSION FOR THE ACHITE GREEN FROM WATER BHAWANI AND AMELIA LACCY JEFFREY KIMURA
Get Abstract	DI OF LEAD AND COPPER USING FICUS VIRENS AND AZADIRACHTA Y, UTTAR PRADESH, INDIA II AND SAURABH SHUKLA HEMICALS FROM BIOCRUDE PRODUCED BY HYDROTHERMAL WET BIOWASTES I, P. SUBRAMANIAN, S. PUGALENDHI1, S. AVUDAINAYAGAM AND D. NS BIOLOGICAL STATUS OF GRAY FOREST SOILS OF WESTERN CAUCASUS BY CADMIUM, ZINC, MOLYBDENUM AND SELENIUM DUESNIKOV, KAMIL SHAGIDULLOVICH KAZEEV, YULIYA VIKTOROVNA NA VIKTOROVNA DENISOVA, EVGENIA VALERYEVNA DADENKO, SEEVNA MYASNIKOVA AND DZHEMALDIN RUSLANOVICH TATLOK DECULAR IMPRINTING POLYMERS IN MICROEMULSION FOR THE ACHITE GREEN FROM WATER BHAWANI AND AMELIA LACCY JEFFREY KIMURA

Get Abstract	
GREEN BUILDING ASSESMENT OF BRAWIJAYA UNIVERSITY BASED ON GBCI GREENSHIP EXISTING BUILDING RATING TOOLS VERSION 1.1 BY GAP ANALYSIS BAMBANG SUHARTO, ALEXANDER TUNGGUL S.H AND LILIYA DEWI SUSANAWATI Get Abstract	
Home International Journals Books Environmental Consulting About Us Contact Us Sub	mit Paper Search Journal Article
Become a fan on Facebook E Follow us on Twitter	VISA
© EM International 2012-2019 Developed by Eneblur Consultin	3

ADSORPTION OF PB²⁺ ION IN WATER WELL WITH AMBERLITE IR 120 NA RESIN

ESTHI KUSDARINI¹, DIAN YANUARITA PURWANINGSIH² AND AGUS BUDIANTO³

¹Mining Engineering Department Adhi Tama Surabaya Institute of Technology, Jalan Arief Rachman Hakim 100, 60117, Surabaya, Indonesia

^{2,3}Chemical Engineering Department Adhi Tama Surabaya Institute of Technology, Jalan Arief Rachman Hakim 100, 60117, Surabaya, Indonesia

(Received 27 June, 2018; accepted 1 August, 2018)

ABSTRACT

Some people in the city of Pasuruan, East Java, Indonesia still use wells water to meet the needs of clean water. Some of the well water samples contain Pb²⁺ ion of 0.15-0.23 mg·L⁻¹. This level exceeds the maximum limit of clean air requirements in Indonesia Standard Ministry of Health Regulation No. 416 of 1990, maximum Pb²⁺ ion level 0.05 mg·L⁻¹. The purpose of this research is to know the adsorption efficiency of IR 120 Na amine resin on Pb²⁺ ion; The isotherm condition of Freundlich and Langmuir. The study was conducted in three stages: 1) analyzing the physical properties and chemical content of samples; 2) processing the air in a cation exchanger processing installation; 3) analyze the content of Pb²⁺ ions processed air. The results showed that Pb²⁺ ion adsorption by IR amberlite resin 120 Na was 90.87-99.57%; In the use of resin mass of 20-100 g and feed rate of 0.0208-0.0435 L·s⁻¹ showed that the Pb²⁺ content of the processed air has met the standard. Adsorption of Pb²⁺ ions by isotherm with equations of Freundlich and Langmuir equation constant is n = 1.6943 and K_t = 6.9984 with result of 0.9715. Langmuir equation constant is A_s = 0.0175 and K_b = 136.8363 with research result of 0.8863.

KEY WORDS : Cation exchanger, Flow rate, Freundlich, Langmuir, Mass

INTRODUCTION

Clean water is a major need in human life. Natural water contains several cations, such as Ca^{2+} , Mg^{2+} , K^+ , and Na^+ . These ions give a taste to the water and determine the quality of water. In addition, water can also contain some heavy metals, such as Pb²⁺, Fe²⁺, Fe³⁺, Zn²⁺, Cd²⁺, Cu²⁺, Ni²⁺, Al³⁺, and others that determine water toxicity (Fardiaz, 1992; Salam *et al.*, 2012; Simonescu *et al.*, 2011; Peng *et al.*, 2009). Pb as one of the heavy metals is very harmful to human health because of its non biodegradable and accumulated in the human body. The toxicity of Pb metal could endanger the life sustainability, activity, growth, metabolism, or reproduction (Chabukdhara and Nema, 2012).

In Pasuruan, East Java, Indonesia, there are several well water containing Pb^{2+} ions between 0.15 to 0.23 mg·L⁻¹. This wells water is used by some

thers that the ion content of Pb^{2+} in well water is to use ion exchange resins, such as Amberlite IRC 718, Purolite1 S930, Dowex A 1, and others (Mendes *et al.*, 2005). Lead (Pb) is an essential and toxic element whose distribution is increased in the environment around humans (Mendes *et al.*, 2005). Exposure to lead in a long time can accumulate in the body and cause side

long time can accumulate in the body and cause side effects on the body organs such as neurologic, reproduction, kidney, and hematology. Children are more vulnarable to exposure to lead than adults. Exposure and lead levels in the blood are

people to meet the needs of clean water. The level of Pb²⁺ ions in the well water exceeds the threshold of

clean water requirements in Indonesia based on

Ministry of Health Regulation No. 416/1990, which

is 0.05 mg.L⁻¹. To maintain public health, Then this

well water treatment should be done before it is

consumed as clean water. One method to decrease

recommended below 10 mg·dL⁻¹ (Lansdown *et al.,* 1986; Goyer, 1990).

One of the methods that can be used to reduce the Pb content is ion exchange (Shi et al., 2013). From many advantages obtained from the method of cation exchanger, among others, resins that have been used can be regenerated, the processing is also flexible, can be done in batch or continuous (Liguori et al., 2015). The resin used can be derived from natural, synthetic, or combination of both materials (Hackbarth et al., 2014; Checinal et al., 2016; Bulgariu and Bulgariu, 2013). The efficiency of resin adsorption can be improved by modification. Amberlite XAD resin modifications produce a surface area of 300-800 m²·g⁻¹ (Ahmad *et al.*, 2015). Several studies have been conducted to determine the ability of Amberlite IR 120 resin to decrease the ion content of Pb²⁺. The effectiveness of resin adsorption can be increased by potentially modified modification. Research has shown that IR Amberlite 120 resin is good enough to absorb Pb²⁺ ions in waste water, which is about 99% after about 4 hours (Demirbas et al., 2005). Other studies have also shown that IRC 718 Amberlite resin can absorb well the Pb²⁺ ion in artificial water samples containing several heavy metal ions. Amberlite IRC 718 ion exchange resistive capacity reached 3.96 meq·g⁻¹ at Pb²⁺ 0.1 M ion concentration (Agrawal *et al.*, 2006).

Research on the adsorption of Pb²⁺ ions by Amberlite resins is indeed interesting, however, in previous studies the samples used were wastewater and artificial samples, not well water (Demirbas *et al.*, 2005; Agrawal *et al.*, 2006). This research refines previous research with novelty of research is the use of Amberlite IR 120 Na resin to adsorb Pb²⁺ ion in well water. The isotermic adsorption performance of Pb²⁺ ions by IR Amberlite 120 NA resin can be known from the Freundlich and Langmuir equations (Stefan *et al.*, 2014). The results of the study are expected to produce the appropriate methods and operating conditions for treating well water into clean water that meets the standards of Minister of Health Regulation No. 416 of 1990. The characteristics of Amberlite IR 120 Na resin are shown in Table 1.

MATERIALS AND METHODS

The materials used are well water, Amberlite IR 120 Na resin, and aquadest. While the tools used are pH meter, thermometer, pump, flow meter, plastic jerry can, water container, porcelain cup, analytical balance, laboratory scale water treatment plant.

Water treatment is done at room temperature and atmospheric pressure. Processing is done by continuous system. In this research, the effect of resin mass and flow rate on the adsorption efficiency of Amberlite IR 120 Na resin to Pb²⁺ ion contained in well water is studied.

The research procedure starts from sampling, initial sample analysis, resin weighing, pH and treated water temperature measurement, well water treatment, analysis of processed water, analysis of data processing, and formulation of Freundlich and Langmuir equations. Weighing resin in 20 g, 60 g, 80 g, and 100 g, each of 3 pieces. In this research the processing system is continuous. The variable used is resin mass and flow rate. The resin mass consists of 4 variables, namely 20 g, 60 g, 80 g, and 100 g. While the flow rate consists of 3 variables, which are 0.0208 L·s⁻¹; 0.0313 L·s⁻¹; And 0.0435 L·s⁻¹. Analysis method of Pb²⁺ ion content used is atomic absorption spectrophotometry (SSA). The processing is carried out in a series of apparatus shown in Figure 1.

Figure 1 shows the installation of a cation exchanger treatment consisting of a well water reservoir, a pump, a cation exchanger reactor, and a processed water container. Two 0.5 inch valves are

Physical Form	Amber spherical beads
Matrix	Styrene divinylbenzene copolymer
Functional group	Sulfonate
Ionic form as shipped	Na ⁺
Total exchange capacity	\geq 2.00 eq/L (Na ⁺ form)
Moisture holding capacity	45 to 50% (Na ⁺ form)
Shipping weight	840 g/L
Particle Size	
Uniformity coefficient	≤ 1.9
Harmonic mean size	0.600 to 0.800 mm < 0.300 mm 2% max
Maximum reversible swelling	$Na^+ \rightarrow H^+ \leq 11\%$

Table 1. Properties of Amberlite Resin IR 120 Na

Fig. 1. Installation of cation exchanger processing

installed between the pump and the reactor to adjust the flow rate. While the flow meter is installed between the valve with reactor inlet hole to control the flow rate. The diameter of the reactor is 4 inches , the reactor height is 16 inches and the resin is 3 inches high. Processing starts from pumping the well water to flow to cation exchanger equipment with certain flow rate. The valve opening to the cation exchanger equipment is set to 25% of the full opening for 0.0208 $L \cdot s^{-1}$ flow rate; 50% of full opening for 0.0313 $L \cdot s^{-1}$ flow rate; And full opening for 0.0435 $L \cdot s^{-1}$ flow rate. The flow rate can be seen from the flow meter mounted between the valve and reactor inlet hole. After steady state conditions, sampling is taken at the reactor outlet hole.

RESULT AND DISCUSSION

This study studied the effect of changes in resin mass and flow rate on the efficiency of Amberlite IR 120 Na resin in adsorbing Pb²⁺ ions. In addition, it also studied the process of adsorption of continuous system isotherms using Freundlich and Langmuir equations.

Initial Analysis of The Well Water

The well water that will be processed into clean water is analyzed for its characteristics based on the parameters of clean water requirements in Indonesia. The results of the initial analysis of the well water samples are presented in Table 2. Table 2 shows that the well water contains lead (Pb) above the maximum water requirement.

Analysis of Pb²⁺ ion Content of The Processed Water

The analysis of ion content of Pb2+ in treated water

Table 2. Initial Analisys of the well water samples				
Parameter	Level	Maximum Limit ^a		
Smell	No smell	No smell		
Taste	Normal	normal		
Temperature	Cemperature 27.5°C Water			
		± 3°C		
TDS	601 mg·L⁻¹	1500 mg·L ⁻¹		
Turbidity	0 NTU	25 NTU		
Color	0 Pt·Co ⁻¹	50 Pt·Co ⁻¹		
pН	8.10	6.5 – 9.0		
As	< 0.00004 mg·L ⁻¹	0.05 mg·L⁻¹		
Fe	$< 0.004 \text{ mg} \cdot \text{L}^{-1}$	$1 \text{ mg} \cdot L^{-1}$		
F	$< 0.02 \text{ mg} \cdot \text{L}^{-1}$	1,5 mg·L ⁻¹		
Cd	< 0,001 mg·L ⁻¹	0,005 mg·L ⁻¹		
CaCO ₃	332 mg·L ⁻¹	500 mg·L ⁻¹		
Cl	29 mg·L⁻¹	600 mg·L ⁻¹		
Cr ⁶⁺	0.01 mg·L⁻¹	0.05 mg·L⁻¹		
Mn	0.23 mg·L⁻¹	0.5 mg·L⁻¹		
Nitrat	0.71 mg·L⁻¹	10 mg·L⁻¹		
Nitrit	0.01 mg·L⁻¹	1 mg·L⁻¹		
Hg	$< 0.000002 \text{ mg} \cdot \text{L}^{-1}$	0.001 mg·L⁻¹		
Se	< 0.00003 mg·L ⁻¹	0.01 mg·L ⁻¹		
Zn	0.08 mg·L⁻¹	15 mg·L⁻¹		
CN	< 0.01 mg·L ⁻¹	0.1 mg·L⁻¹		
SO_4	4 mg·L⁻¹	400 mg·L⁻¹		
Pb	0.23 mg·L⁻¹	0.05 mg·L ⁻¹		
Surfactant	$< 0.05 \text{ mg} \cdot \text{L}^{-1}$	0.5 mg·L⁻¹		
Organic	$< 1.9 \text{ mg} \cdot \text{L}^{-1}$	10 mg·L⁻¹		
Coliform	1 Col·(100 mL)-1	10 Col·(100 mL) ⁻¹		

^a Minister of Health Regulation No. 416/1990

using cation exchanger is presented in Table 3. Table 3 contains the data showing the relationship between the resin mass and the flow rate of the Pb²⁺ ion content in treated well water. Table 3 shows that the ion content of Pb²⁺ well water after being treated with Amberlite IR 120 Na resin ranged from 0.001-0.021 mgL⁻¹ so that it has met the requirements of

Mass of	Content of Pb ²⁺ ion (mg·L ⁻¹)				
resin (g)	$\overline{Q1=0.0208 \text{ L}\cdot \text{s}^{-1}}$	Q2=0.0313 L·s ⁻¹	Q3=0.0435 L·s ⁻¹		
20	0.011	0.015	0.021		
60	0.003	0.0068	0.02		
80	0.001	0.0025	0.0058		
100	0.001	0.0025	0.0028		

 Table 3. The analysis result of Pb²⁺ ion content in well water after processed using Amberlite IR 120 Na resin.

clean water in Indonesia. The Pb^{2+} ion content of the processed water is getting smaller at the smaller flow rate and the larger the resin mass. The adsorption efficiency of resin to Pb^{2+} ions in well water is calculated from equation (1).

$$\varsigma = \frac{\text{Pb level (before processed - after processed)}}{\text{Pb level before processed}} \times 100\% ...(1)$$

Adsorption efficiency of Amberlite IR 120 Na resin on Pb^{2+} ion is shown in Figure 2.

Resin Mass and Flow Rate

Figure 2 shows the relationship between the resin mass and flow rate to the adsorption efficiency of Pb²⁺ ions from the Amberlite IR 120 Na resin. It shows that the larger the resin mass and the smaller the flow rate, the greater the adsorption efficiency of the resin to the Pb^{2+} ion. At a flow rate of 0.0208 L·s⁻ ¹ the adsorption efficiency ranges from 0.001 - 0.011 $L \cdot s^{-1}$. At a flow rate of 0.0313 $L \cdot s^{-1}$ the adsorption efficiency ranges from 0.0025 - 0.0150 L·s⁻¹. While the flow rate of 0.0435 L·s⁻¹ adsorption efficiency ranged from 0.0028 to 0.0210 L·s⁻¹. Optimal adsorption efficiency of resin was happened at resin mass of 80 g and 100 g, that is between 97.48-99.57%. Optimal resin adsorption efficiency also occurs in the water flow rate 0.02 L·s⁻¹, which is between 95.22- 99.57%. While the highest resin efficiency is on the condition of resin mass 80 g and 100 g with a flow rate of

Fig. 2. The effect of mass of Amberlite 120 Na resin and flow rate (Q) on the adsorption efficiency of Pb²⁺ ion

0.0208 L·s⁻¹ that is equal to 99.57%. This proves that the efficiency of Amberlite IR 120 Na resin in decreasing the content of Pb²⁺ ions in well water is greater than the resin efficiency in decreasing the ion content of Pb²⁺ in waste water, i.e. 99% (Demirbas *et al.*, 2005).

Isothermic Adsorption

The adsorption process through ion ion reaction mechanism, physical adsorption, adsorption of electrolyte molecules, the formation of complexes between central ions and functional groups, and the formation of hydrates on the surface or in the pores of the adsorbent. Some metals that can be absorbed by resins are a function of both metal concentration and temperature. The amount of Pb adsorbed must be as a function of concentration at constant temperature. This can be explained in the isothermal adsorption equation, such as Freundlich and Langmuir. Freundlich isothermic equations are often used to describe the resin-adsorption characteristics used in solution or wastewater treatment [19,20]. This study included the adsorption characteristics of isothermic resin Amberlite IR 120 Na to Pb²⁺ ion. The isothermal adsorption characteristics is in the Freundlich and Langmuir equations.

Freundlich Equation

The Freundlich equation is shown at equation (2).

$$\frac{X}{m} = K_{\rm f} C_e^{\frac{1}{n}}$$
 ... (2)

Where is the number of adsorbed Pb per unit of resin mass (ppm.g⁻¹), C_e is Pb concentration in in the adsorbate after experiencing the desorption process (ppm), K_f and n are the empirical constants (Naushad *et al.*, 2015; Wolowicz *et al.*, 2016). The constants of K_f and n can be found using equation (3) below.

$$\operatorname{Log} \frac{x}{m} = \log \operatorname{K}_{\mathrm{f}} + \frac{1}{n} \log \operatorname{C}_{\mathrm{e}} \qquad .. (3)$$

Graph to represent the Freundlich equation is shown in Figure 3. That Figure is the graph of the relation of log(x/m) and $log C_e$. Based on the equation (3) and Figure 3, it can be derived (1/n) =0.5902 and n = 1.6943, while log K_f = 0.845 so K_f = 6.9984. Freundlich equation obtained from isothermal adsorption of Amberlite IR 120 Na resin to Pb²⁺ion is

$$\frac{x}{-} = K_f C_e^{0.5902}$$
 ... (4)

The correlation coefficient of the Freundlich equation is 0.9715.

Fig. 3. The Relation of log(x/m) vs log C_e from Freundlich equation.

Langmuir Equation

Langmuir's isothermic equation is shown in the equation (5).

Where A_s and K_b are coefficients, q is the weight of adsorbed Pb per unit of resin weight (ppm·g⁻¹), and c is the Pb concentration in well water after adsorbed (ppm) (Naushad *et al.*, 2015; Wolowicz *et al.*, 2016). The graph to illustrate the Langmuir equation is presented in Figure 4.

Fig. 4. The Relation of C/q vs C from Langmuir equation

Figure 4 is a graph of the relationship between C/ q and C. Based on equation (5) and Figure 4 it is obtained $A_s = 0.0175$, while $K_b = 136.8363$. The Langmuir equation obtained from isothermal adsorption of Amberlite IR 120 Na resin to Pb²⁺ ion is:

$$\frac{c}{q} = 0.4176 + \frac{c}{0.0175} \qquad \dots (6)$$

The correlation coefficient of Langmuir equation is 0.8863.

CONCLUSION

Amberlite IR 120 Na resin is able to adsorb Pb2+ ion

contained in well water with efficiency between 90.87-99.57%. Processed water has met the requirements of clean water in Indonesia based on Permenkes standard No. 416/Menkes/1990. Adsorption of Pb²⁺ ions under resin mass operating conditions of 20-100 g and a flow rate of 0.02-0.04 L·s⁻¹ shows eligible processed water results. The isothermal adsorption test of Amberlite IR 120 Na resin to Pb2+ ion in well water using Freundlich equation with constant n = 1.6943 and K_r = 6.9984; Whereas when expressed in the Langmuir Equation with constants $A_s = 0.0175$ and $K_h = 136.8363$. Freundlich equation correlation coefficient of 0.9715 while Langmuir equation coefficient of 0.8863. Freundlich's equations and Langmuir's equations are accurate, but Freunlich's equations are more accurate than Langmuir's equations.

ACKNOWLEDGMENTS

The authors wish to thank the research and technology-higher education ministry of the Republic of Indonesia who has funded this research.

REFFERENCES

- Agrawal. A., Sahu, K.K. 2006. Separation and Recovery of Lead from A Mixture of Some Heavy Metals Using Amberlite IRC 718 Chelating Resin, *Journal* of Hazardous Materials: B(133) : 299 - 303.
- Ahmad, A., Siddique, J.A., Laskar, M.A., Kumar, R., Mohd-Setapar, S.H., Khatoon, A., Shiekh, R.A.: New Generation Amberlite XAD Resin for The Removal of Metal Ions. 2015. A Review, *Journal of Environmental Sciences*. 31 : 104 - 123.
- Bulgariu, D., Bulgariu, L. 2013. Sorption of Pb(II) onto A Mixture of Algae Waste Biomass and Anion Exchanger Resin in A Packed-Bed Column, *Biresource Technology*. 129 : 374 - 380.
- Cechinel, M.A., Mayer, D.A., Pozdniakova, T.A., Mazur, L.P., Boaventura, R.A., de Souza, A.A.U., de Souza, S.M.G.U., Vilar, V.J. 2016. Removal of Metal lons from A Petrochemical Wastewater Using Brown Macro-Algae as Natural Cation-Exchangers, *Chemical Engineering Journal*. 286 : 1 - 15.
- Chabukdhara, M., Nema, A.K. 2012. Assessment of Heavy Metal Contamination in Hindon River Sediments: A Chemometric and Geochemical Approach. *Chemosphere*: 87(8) : 945 - 953.
- Demirbas, A., Pehlivan, E., Gode, F., Altun, T., Arslan, G. 2005. Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from Aqueous Solution on Amberlite IR-120 Synthetic Resin, *Journal of Colloid and Interface Scienc*. 282 : 20 - 25.
- Fardiaz, S. 1992. Polusi Air dan Udara, 11th edition,

Kanisius Press, Yogyakarta : 19-20.

- Goyer, R.A. 1990. Lead Toxicity: From Overt to Subclinical to Subtle Health Effects, *Environmental Health Perspective*: 86 : 177-181.
- Hackbarth, F.V., Girardi, F., de Souza, S.M.G.U., de Souza, A.A., Boaventura, R.A.R., Vilar, V.J.P. 2014.
 Marine Macroalgae Pelvetia Canaliculata (Phaeophyceae) as A Natural Cation Exchanger for Cadmium and Lead lons Separations in Aqueous Solutions, *Chemical Engineering Journal*: 242:294 - 305.
- Lansdown, Richard, Yule, W. 1986. The Lead Debate: The Environment, Toxicology and Child Health, *Croom Helm Ltd. Beckenham* : 286.
- Liguori, F., Moreno-Marrodan, C., Barbaro, P. 2015. Metal Nanoparticles Immobilized on Ion-Exchange Resins: A Versatile and Effective Catalyst Platform for Sustainable Chemistry, *Chinese Journal of Catalysis*: 36 : 1157 - 1169.
- Mendes, F.D. and Martins, A.H. 2005. Recovery of Nickel and Cobalt from Acid Leach Pulp by Ion Exchange Using Chelating Resin, *Mineral Engineering*: 18(9) : 945 - 954.
- Naushad, M., AlQthman, Z.A., Inamuddin, Javadian, H. 2015. Removal of Pb(II) from Aqueous Solution Using Ethylene Diamine Tetra Acetic Acid-Zr(IV) Iodate Composite Cation Exchanger: Kinetics, Isotherms and Thermodyamic Studies, *Journal of*

Industrial and Engineering Chemistry. 25: 35 - 41.

- Salam, M.A., Al-Zhrani, G. and Kosa, S.A. 2012. Simultaneous Removal of Copper(II), Lead(II), Zinc(II) and Cadmium(II) from Aqueous Solutions by Multi-Walled Carbon Nanotubes. *C.R. Chimie*: 15 : 398 - 408.
- Shi, J., Yi, S., He, H., Long, C. and Li, A. 2013. Preparation of Nanoscale Zero-Valent Iron Supported on Chelating Resin with Nitrogen Donor Atoms for Simultaneous Reduction of Pb²⁺ and NO₃⁻, *Chemical Engineering Journal*. 230 : 166 - 171.
- Simonescu, C.M, Dinca, O., Oprea, O. and Capatina, C. 2011. Kinetics and Equilibrium Studies on Sorption of Copper from Aqueous Solutions onto Thermal Power Plants Ash. *Rev. Chim.* 62 (2) : 183-188.
- Stefan, D.S., Meghea, I. 2014. Mechanism of Simultaneous Removal of Ca²⁺, Ni²⁺, Pb²⁺ and Al³⁺ Ions from Aqueous Solutions Using Purolite S930 Ion Exchange Resin. *Comptes Rendus Chimie*. 17: 496-502.
- Peng, J.F., Song, Y.H., Peng, Y., Cui, X.Y., Qiu, G.L. 2009. The Remediation of Heavy Metals Contaminated Sediment, *Journal of Hazardous Materials*. 161(2): 633 - 640.
- Wolowicz, A. and Hubicki, Z. 2016. Carbon-Based Adsorber Resin Lewatit AF 5 Applicability in Metal Ion Recovery. *Microporous and Mesoporous Materials*: 224 : 400-414.