

SEMINAR NASIONAL SAINS DAN TEKNOLOGI TERAPAN

"SNTEKPAN IV"

2016

INOVASI TEKNOLOGI INFRASTRUKTUR BERWAWASAN LINGKUNGAN

ISBN: 978-602-98569-1-0

PROSIDING SEMINAR NASIONAL SAINS DAN TEKNOLOGI TERAPAN IV (SNTEKPAN IV) TAHUN 2016

" INOVASI TEKNOLOGI INFRASTRUKTUR BERWAWASAN LINGKUNGAN "

INSTITUT TEKNOLOGI ADHI TAMA SURABAYA

Jl. ARief Rachman Hakim 100, Surabaya Tlp/Fax : 0315945043 / 0315997244

UCAPAN TERIMA KASIH

KEPADA:

REKTOR ITATS

Prof. Dr. Ir. Triwulan, DEA.

Prof. Dr. Elizabeth Titiek Winanti, M.S.

SUSUNAN PANITIA PELAKSANA SEMINAR NASIONAL SAINS DAN TEKNOLOGI TERAPAN KE – 4, 2016

Penanggung Jawab	: 1. Syamsuri,ST.,MT.,PhD 2 Dr. Ir. Minto Basuki, MT	Nip. 051180 Nip. 921029
Panitia Pelaksana Ketua Wakil Ketua	: : Kurnia Hadi Putra, S.Pd.,ST.,MT Jusfarida, SSi.MT.	Nip. 153104 Nip. 133005
Sekretaris	: 1. Efrita Arfah Zuliari, ST.,MT.2. Erlin Novianti	Nip. 051181 Nip. 874050
Bendahara	: Theresia MCA. ST.,MT.	Nip. 941020
Sie Humas	: 1. Suparjo, ST.,MT.2. Anwar Shodiq, ST3. Nanang Fakhrur Rozi, S.ST, M.Kom	Nip. 954184 Nip. 153106 Nip. 122093
Sie Publikasi	: 1. Faza Wahmuda, ST.,MT. 2. Randy Pratama S. ST.,M.Arch.	Nip. 052031 Nip. 133012
Sie Acara dan Sidang	 Farida, S.Kom. Eky Novianarenti, ST.MT. Dian Pramita Eka L., ST.,MT. Ratna Puspitasari,ST.,MT. Addin Aditya, S.Kom 	Nip. 112062 Nip. 153108 Nip. 133013 Nip. 112073 Nip. 153064
Sie Makalah & Proceding	 Isa Albana , S.Si., MSi. Achmad Chusnun Ni'am. S.Si., MT Erlinda Ningsih. ST., MT. Amalia Anjani A.S.Kom., M.Kom 	Nip. 143026 Nip. 143027 Nip. 153058 Nip. 153090
Sie Konsumsi	: 1. Siti Choiriyah, ST.MT 2. Yustia Wulandari, M. ST.MT.	Nip. 941019 Nip. 072042
Sie Perlengkapan	: 1. Moch. Kalam Mollah, S.Ag.MPdl2. Ir. Damarwulan3. Heri Irawan,ST.,MT4. Suwari	Nip. 051179 Nip. 114269 Nip. 014232 Nip. 944146

Reviewer :

Dr. Yulfiah, ST., M.Si.
 Syamsuri, ST., MT., PhD.
 Dr.Ir. Minto Basuki, MT.
 Dr.Agus Budianto, ST.,MT.
 Prof. Dr. E. Titiek Winanti, MS.
 Dr. Mat Syai'in, ST.,MT.,Ph.D
 Dr. Nyoman Puspa Asri, M.Sc
 Nip. 941033
 Nip. 921029
 (Universitas Negeri Surabaya)
 (Politeknik Perkapalan Negeri Surabaya)
 (Universitas WR Supratman)

ALAMAT TAUTAN ARTIKEL DAN KELENGKAPAN PROSIDING

http://sntekpan.itats.ac.id/2016/prosiding

PESERTA

Seminar Nasional Sains dan Teknologi Terapan IV Tahun 2016 Institut Teknologi Adhi Tama Surabaya

A. Bidang Teknik Sipil dan Perancangan

No	Judul Artikel (A)	Pemakalah	Halaman
1	Analisis Pemanfaatan Kapur Sebagai Bahan	Gati Sri Utami, A.	A-1
	Stabilisasi Tanah Lempung Ditinjau dari Kuat Geser	Harris HA	
2	Memilih Alternatif Metode Pelaksanaan Plat Bawah	Abdul Haris HA,	A-9
	Saluran Box Culvert Kali Tutup Gresik	Dena Abidin	
3	Pembangunan Perumahan Rendah Emisi Karbon di	Failasuf Herman	A-15
	Surabaya Timur	Hendra	
4	Tingkat Efisiensi Reduksi Sampah di TPST Super	Fajar Rahmadani	A-25
	Depo Sutorejo Kota Surabaya 2016	Setyaningsi,	
		Jenny Caroline	
5	Evaluasi Kualitas Pelayanan Halte dan	Ari Widayanti,	A-33
	Pengembangannya Di Kota Surabaya untuk	Anita Susanti,	
	Mendukung Terwujudnya Infrastruktur Berwawasan	Agus Wiyono	
	Lingkungan		
6	Tata Guna Lahan Jls untuk Penyelamatan Tnmb	Taufan Abadi,	A-45
	Kabupaten Jember dan Banyuwangi Dengan Metode	Irawati	
	Irap	D . D .	4.50
7	Konsep Desain Partisi dengan Sistem Modular Untuk	Ratna Puspitasari,	A-59
	Hunian Dengan Lahan Terbatas di Surabaya	Faza Wahmuda	A 65
8	Manajemen Rekayasa Lalu Lintas Akibat	Willy	A - 65
	Pembangunan Condotel Panbil Menggunakan	Kriswardhana,	
9	Software PTV Vistro	Yorika Pratidina	A - 73
9	Busur Cetak; Desain Alat dan Metode Mempermudah Pembuatan Pot Gerabah	R.Bambang Gatot Soebroto	A - /3
10	Kuat Tekan Beton Dengan Menggunakan Pasir	Siti Choiriyah,	A - 79
10	Gunung Merapi Ditinjau dari Manajemen Kwalitas	Dewi Pertiwi	A - 19
11	Evaluasi Tarif Bus Antarkota Dalam Provinsi	Theresia MCA,	A - 87
111	Berdasarkan Biaya Operasional Kendaraan Trayek	Andy Kurniawan	11 07
	Surabaya-Trenggalek	Tinay Izaniia wan	
12	Pemilihan Subkontraktor Pada Proyek	Mohamad F.N.	A - 93
	Pengembangan Rumah Sakit Dr. Soetomo Dengan	Aulady, Felicia	
	Menggunakan Metode Analytical Hierarchy Process	Tria Nuciferani,	
	(AHP)	Yudha Pratama	
13	Pemanfaatan Limbah Marmer Hasil Olahan Industri	Candra Aditya,	A - 99
	Batu Marmer Pada Bata Ringan Clc (Cellular	Abdul Halim,	
	Lightweight Concrete)	Silviana	
14	Analisis Karakteristik Demand dan Moda	Kurnia Hadi	A - 107
	Transportasi Di Kabupaten Rote Ndao Propinsi Nusa	Putra, Mutiara	
	Tenggara Timur	Firdausi	
15	Profil Volume Lalu Lintas dan Kualitas Udara	Taty Alfiah, Evi	A - 115
	Ambien Pada Ruas Jalan Ir. Soekarno Surabaya	Yuliawati, Yoseph	
		F. Bota, Enggar	
		Afriyandi	

No	Judul Artikel (A)	Pemakalah	Halaman
16	Pengaruh Umur, Masa Kerja dan Pendidikan Tenaga	Feri Harianto, Ana	A - 121
	Kerja Terhadap Daya Dengar di PT. Alfabet	Lufiatul Chorimah	
17	Kajian Teknis Kinerja Alat Muat dan Alat Angkut	Yazid Fanani,	A - 127
	dalam Upaya Mencapai Sasaran Produksi	Rino Firsa Putra	
	Penambangan Batugamping di PT. United Tractors	Syahanda, Ahmad	
	Semen Gresik Kabupaten Tuban Jawa Timur	Fawaidun	
		Nahdliyin	
18	Pengembangan Jiwa Kewirausahaan Siswa SMA	Achmad Chusnun	A - 139
	Muhammadiyah 1 Gresik	Ni'am	
19	Analisis Pemilihan Moda Kendaraan Pribadi dan	Mutiara Firdausi,	A - 143
	Angkutan Umum di Bandara Internasional	Ratih Sekartadji	
	Adisucipto Yogyakarta	Sambodja	
20	Analisis Kapasitas dan Tingkat Pelayanan pada Ruas	Amrita Winaya	A - 151
	Jl. Margorejo Indah Surabaya	Shita Dewi,	
		Andries Kharisma	
21	Pemanfaatan Paving Stone Beton Berpori dengan	Arie Wardhono	A - 157
	Bahan Tambahan Sikacim untuk Menanggulangi		
	Permasalahan Banjir		

B. Bidang Teknologi Industri

No	Judul artikel (B)	Pemakalah	Halaman
1	Perancangan Mesin Secara Ergonomi	Jaka Purnama, Abdul	B 1 - 8
	Untuk Meningkatkan Kapasitas Produksi	Haris H.A.	
	Di UKM Mebel		
2	Sistem Pengaturan Pembukaan Gas	Catur Wahyu	B 9 - 16
	Acitelin dan Oksigen Pada Scator Untuk	Nugroho, Wahyu	
	Pemotongan Plat Baja	Setyo Pambudi	
3	Rancang Bangun Inverter 3 Fasa Sebagai	Achmad Efendi	B 17 - 24
	Pengendali Kecepatan Motor Induksi 3	Setiawan, Tjahya	
	Fasa 1/2hp 0.37kw Menggunakan Metode	Odinanto, Syahri	
	Spwm Berbasis ARM Mikrokontroler	Muharom	
	(STM32F4)		
4	Perbandingan penggunaan model filter	Agus Kiswantono,	B 25 - 36
	pasif dan filter aktif seri tiga phasa untuk	Amirullah	
	meningkatkan kualitas daya listrik akibat		
	beban non-linier Di industri		
5	Kaji Eksperimental Distribusi Temperatur	Denny M. E	B 37 - 48
	Pada Portable Cold Box Dengan	Soedjono, Joko	
	Thermoelektrik Tec1-12706	Sarsetiyanto, Gathot	
		Dwi Winarno, Alichia	
		Silfiyati	
6	Meningkatkan Kapasitas Dan Efisiens	Suhariyanto, Joko	B 49 - 54
	Pompa Centrifugal Dengan Jet-Pump	Sarsetyanto, Budi L	
		Sanjoto, Atria	
		Pradityana	
7	Analisa Optimasi Manajemen Energi	Nurmansyah Dwi	B 55 - 64
	Listrik Chiller Pada Central Air	Cahyono, Titiek	
		Suheta	

No	Judul artikel (B)	Pemakalah	Halaman
	Conditioning Plan Di Mall Marvell City –		
	Surabaya		
8	Analisis Laju Perpindahan Panas Pada	Joko Sarsetiyanto,	B 65 - 76
	Final Superheater Pada Instalasi Steam	Denny M.E Soedjono,	
	Generator Untuk Sistim Pembangkit Daya	Aprilina Deluk	
	150 Mw	Rahmanita	
9	Otptimasi Proses Manufaktur Penyangga	Hendro Nurhadi,	B 75 - 80
	Sumbu Z Pada Platform Wodworking	Sandro Prasetiyo	
	CNC M 150		
10	Studi Numerik Pengaruh Obstacle Prisma	Naili Husna Dewi,	B 81 - 86
	Segitiga Sudut Tekuk 40° Terhadap	Lohdy Diana, Arrad	
	Perpindahan Panas Pada Pemanas Udara	Ghani Safitra	
	Surya Berbentuk Trapezoidal		
11	Karakteristik Menara Pendingin Tipe	Arrad Ghani Safitra,	B 87 - 94
	Induced Draft Dengan Bahan Isian Kain	Fifi Hesty Sholihah,	
	Flanel	Inas Nabilah	
		Fauziyyah	
12	Sistem Minimum Mekatronika Printer 3d	Hendro Nurhadi, Ardi	B 95 - 102
	Berbasis DLP Untuk Perkembangan	Dara Yuda	
	Teknologi Indonesia		
13	Perancangan Dan Pembuatan Alat Proteksi	Riza Agung	B 103 - 110
	Terhadap Gangguan Tegangan Lebih	Firmansyah, Titiek	
	Berbasis Mikrokontroler	Suheta, Krisna Sutopo	
14	Pembuatan Model Simulasi Pendulum	Wahyu Setyo	B 110 - 120
	Motiondengan Pemrograman Visual	Pambudi, Dedy	
	Menggunakan Pendekatan Ordinary	Rusdyanto	
	Differential Equation (Ode) Orde 2	-	
	Dengan Metode Euler		
15	Penilaian Kinerja Pemasok Untuk	Syahro Wardi,	B 121 - 130
	Meningkatkan Akurasi Pengiriman	Lukmandono	
	Dengan Pendekatan Supply Chain		
	Operations Reference (SCOR)		
16	Desain dan Pembuatan Rangkaian Inverter	Rachmad Azhari,	B 131 - 136
	Satu Fasa Pada Rumah Mandiri Energi	Tjahya Odinanto,	
	Menggunakan Metoda SPWM	Akhmad Fahruzi	
17	Penempatan Dg Pada Jaringan Sistem	Efrita Arfah Z	B 137 - 142
	Distribusi Untuk Meningkatkan Stabilitas		
	Tegangan		
18	Analisa Struktur Fenite Element Method	Hendro Nurhadi,	B 143 - 150
	Rangka Pada Remote Control Weapon	Imam Wahyudi	
	System Kaliber 12.7 Mm		
19	Studi Pendahuluan Penggunaan Minimum	Desmas Arifianto	B 151 - 160
	Quantity Lubricant Pada Proses Pemesinan	Patriawan, Hery	
		Irawan, Eriek Wahyu	
		Restu Widodo	
20	Upaya percepatan proyek rumah hunian	Narto, Lukmandono	B 161 - 170
	dengan optimalisasi biaya di PT. XYZ		
	dengan pendekatan CPM & PERT		

No	Judul artikel (B)	Pemakalah	Halaman
21	Upaya Peningkatan Kualitas Produk Melalui Analisis Jenis Cacat Dengan Menggunakan Metode FMEA Pada PT XYZ	Farid Juliyanto, Evi Yuliawati	B 171 - 178
22	Analisa Pengaruh Jenis Elektroda Pengelasan Smaw Terhadap Kekuatan Stainless Steel 304	Vuri Ayu Setyowati, Eriek Wahyu Restu Widodo, Suheni	B 179 - 184
23	Perancangan dan Uji Performansi Sepeda Kargo Hybrid "E-Cargo Bike"	B 185 - 192	
24	Pengaruh Penambahan Nutrisi Rumen, Urea & NaOH Terhadap Performa Kompor Biogas	Syamsuri, Suheni, Yustia Wulandari dan Aziz	B 193 - 200
25	Perancangan Kereta Dorong Bayi Sistem Lipat Penggerak Hibrid Yang Fleksibel Dan Ramah Lingkungan	B 201 - 206	
26	pemanfaataan limbah kakao (<i>Theobroma Cacao L</i>) sebagai karbon aktif dengan aktifator termal dan kimia	B 207 -212	
27	Konversi Palm Fatty Acid Distillate (PFAD) Menjadi Biodiesel Menggunakan Katalis P-Tsa	B 213 - 220	
28	Studi Perbandingan Nilai Daktilitas Hollow Pile Dengan dan Tanpa Penambahan Material Pengisi Beton Cor Setempat	Jaka Propika, Eka Susanti	B 221 - 230
29	Analisis Pendekatan Six SIGMA Sebagai Pereduksi Kecacatan Produk Herbisida Cair 1 Lt (Studi Kasus : PT. Bayer Indonesia - Surabaya)	Rony Prabowo	B 231 - 244
30	Analisis Performa Circulating Water Pump Pada Industri Pembangkitan (STUDI KASUS PLTU BOLOK NTT) Heru Mirmanto, N Ikhwan		B 245 - 254
31	Perlakuan hidrothermal dengan kondisi alkalin pada jerami padi untuk meningkatkan Produksi biogas	Abas Sato, Yustia Wulandari	B 255 - 264
32	Perencanaan Pembangkit Listrik Hybrid Di Pulau Gili Labak Kabupaten Sumenep Madura Menggunakan Teknik Distributed Generation	B 265 - 272	
33	Rancang Bangun Sistem Pengontrol Temperatur Dan Kelembaban Untuk Budidaya Jamur Tiram Dengan Sistem Kontrol PID Berbasis Arduino UNO	Andy Suryowinoto, Abdul Hamid, dan Joko Lelono	B 273 - 278

PEMANFAATAAN LIMBAH KAKAO (Theobroma cacao L) SEBAGAI KARBON AKTIF DENGAN AKTIFATOR TERMAL DAN KIMIA

Agus Budianto, Romiarto, Fitrianingtyas Institut Teknologi Adhi Tama Surabaya-ITATS email: budichemical@itats.ac.id

ABSTRACT

Carbon active is one of important product for industry. The functions of activated carbon are as adsorben, catalis, ordor absorber and colour. In 2015, Indonesia still imports of active carbon about US\$ 17,900,000. This import increases about 10.70% in every year. In another side, active carbon materials are available in Indonesia. One of the materials is cocoa shell. This research was learning about the process of making active carbon from cacao shell. The aim of this research was to get appropriate process of making active carbon from cacao shell with certain specification especially agree with SNI No. 06-3730-1995. This research was conducted with few steps. First is carbonation process with few temperatures, such as 55°C; 600°C; 650°C and 700°C. Second is chemical activation process is done by acid phosphate 0.4 m; 0.6M; 0.8 m and 1.0M. The last step is the thermal activation of 600 °C. The result showed that activated carbon which using cacao shell waste with concentration H_3PO_4 O.8 in the carbonization temperature of 700°C was getting the maximum iodine number is 1194.38, the water content of 0.730 % and specific surface area about 210.919 m²/g

Keywords: Numbers iodine, surface area, Activated Carbon, Cocoa Leather

ABSTRAK

Karbon aktif merupakan salah satu produk yang penting bagi Industri. Karbon aktif berfungsi sebagai adsorben, katalis, penyerap bau dan warna. Tahun 2015 Indonesia masih melakukan impor karbon aktif senilai hampir US\$17. 900.000. Impor ini mengalami kenaikan 10,70% tiap tahun. Pada sisi lain bahan baku karbon aktif tersedia melimpah di Indonesia salah satunya adalah kulit kakao. Penelitian ini mempelajari proses pembuatan karbon aktif dari kulit Kakao. Tujuan penelitian adalah untuk mendapatkan proses pembuatan karbon aktif yang tepat dengan spesifikasi tertentu terutama sesuai SNI No. 06-3730-1995. Penelitian ini dilakukan dengan langkah: proses karbonisasi pada temperatur 550€; 600€; 650€ dan 700€. Proses aktivasi kimia dilakukan dengan Asam phospat 0,4M; 0,6M; 0,8M dan 1,0M. Langkah akhir adalah aktivasi thermal 600€. Hasil penelitian menunjukkan bahwa karbon aktif pemanfaatan limbah kulit Kakao dengan konsentrasi H₃PO₄ 0,8M pada suhu karbonisasi 700 € mendapatkan hasil bilangan iod maksimal yaitu 1.194,38, kadar air 0,730 % dan luas permukaan spesifik 210,919 m²g .

Kata Kunci: Bilangan iod, Luas permukaan, Karbon aktif, Kulit Kakao

PENDAHULUAN

Tanaman kakao merupakan salah satu tumbuhan produktif yang penting di Indonesia. Tanaman ini menhasilkan buah kakao. Buah kakao merupakan bahan baku industri coklat. Kulit buah kakao merupakan limbah sekitar 75% darai total buah kakao [1]. Industri coklat dapat menghasilkan limbah kulit yang banyak sehingga memerlukan pemanfaatan limbah yang tepat. Limbah kulit kakao dapat dimanfaatkan menjadi produk yang berkualitas. Selama ini sebenarnya telah ada pemanfaatan kulit kakao. Kulit kakao telah digunakan sebagai pakan ternak, bahan pupuk dan bahan bakar, namun demikian pemanfaatannya masih sedikit. Cara lain pemanfaatan kulit kakao adalah dengan membuat karbon aktif. Hal ini disukung dengan data bahwa kandungan selulosa kulit kakao 23-54%. Kulit buah kakao mempunyai kandungan senyawa organik seperti protein kasar 5,69-9,69 %; dan serat kasar 33,19-39,45 % [2].

Pemanfaatan kulit kakao telah dilakukan beberapa peneliti untuk membuat karbon aktif. Yana dan Masitoh, meneliti pembuatan karbon aktif dari kulit kakao. Penelitian dilakukan dengan proses karbonisasi pada suhu 500°C, aktivasi dengan larutan ZCl 2 dan suhu pemanasan 600°C. Karbon aktif yang dihasilkan memiliki bilangan iodin maksimal 816,583% [3]. Beberapa peneliti menunjukkan bahwa penggunaan aktifator asam phospat memberikan hasil yang baik. Penelitian ini mencoba memperbaiki kualitas bilangan iodin karbon aktif dari kulit kakao dengan modifikasi

proses penelitian. Perbaikan proses menggunakan aktifator asam phospat dengan berbagai konsentrasi dan berbagai temperature proses.

TINJAUAN PUSTAKA

Karbon aktif merupakan bahan yang mengadung karbon dan merupakan padatan berpori. Bahan ini merupakan hasil pemanasan bahan mengandung karbon pada suhu tinggi tetapi tidak teroksidasi [4]. Karbon aktif memiliki kemampuan sebagai zat pnyerap atau adsorben dengan adanya pori dan luas permukaan sebagai tempat mrnagkap partikel. Karbon aktif dibuat dari berbagai bahan mengandung karbon dengan proses pirolisis. Cangkang kelapa sawit dapat diolah menjadi karbon aktif. Proses pirolisa dilakukan pada temperature 400 °C dengan activator asam sulfat [5]. Tempurung kelapa telah dibuat menjadi karbon aktif oleh Pambayun dkk. Aktifasi kimia dilakukan menggunakan ZCl 2 dan Na₂CO₃ serta aktifasi fisika pada 700 °C.

Suhendra dkk melakukan penelitian pembuatan karbon aktif. Aktifasi arang aktif menggnakan asam sulfat. Hasil penelitian menunjukkan bahwa rasio *activator*: prekursor 1,25; suhu optimum aktivasi adalah 300°C; dan waktu aktivasi 1 jam. Aplikasi arang aktif menghasilkan kondisi optimum sebagai berikut: PH optimum penyerapan 5; waktu kontak optimum 3 jam; dan kapasitas serapan maksimum 25,1 mg/g [6]. Ramdja dkk juga meneliti pembuatan karbon aktif dari Pelapah Kelapa. Kondisi operasi terbaik dan efektif pembuatan karbon aktif dari pelapah kelapabadalah pada temperatur karbonisasi 500°C, dengan menggunakan aktifator HCl 0,3M dan lama aktivasi 24 jam. Karbon aktif memiliki Rendemen arang 9,7%; at volatil pada 950°C sebesar 18,89%; kadar air 5,31%; kadar abu 7,78%; kadar fiæd karbon 73,33%; daya serap terhadap iodium 832,5296 mg/g; daya serap terhadap metilen blue 464,1949 mg/g; dan luas permukaan 199,2601 m²gr [7].

Sani dkk meneliti pembuatan karbon aktif dari gambut. Waktu aktivasi pembuatan karbon aktif dari tanah gambut mempengaruhi nilai kadar air maupun kadar abu pada hasil karbon aktif, semakin lama waktu aktivasi semakin kecil nilai kadar air maupun kadar abunya. Konsentrasi larutan H₂ SO4 yang ditambahkan mempengaruhi hasil penyerapan karbon aktif terhadap iodin. Daya serap karbon aktif terhadap iodin (I₂) yaitu diperoleh nilai 21,88% pada konsentrasi H₂SO₄ 20% dan waktu aktivasi 2,5 jam. Untuk proses pembuatan karbon aktif dengan metode aktivasi secara fisika didapatkan nilai daya serap terhadap iodin (I₂) sebesar 21,88%, sedangkan pada proses aktivasi secara kimia sebesar 23,86%. Kualitas karbon aktif sebagai produk indutri harus sesuai dengan Standar Nasional Indonesia (SNI). Persyaratan sesuai SNI No. 06-3730-1995 tercantum pada Table 1.

Tabel 1. Persyaratan Arang Aktif Standar Nasional Indonesia No.06-3730-1995

Jenis Persyaratan			Parameter	
Kadar Air			Maksimum 15%	
Kadar Abu			Maksimum 10%	
Kadar 2 t Menguap			Maksimum 25%	
Kadar K	arbon Tei	rikat	Minimum 65%	
Daya	Serap	Terhadap	Minimum 750	
Yodium			mg/g	
Daya Serap Terhadap			Minimum 25%	
Benzena	•		IVIIIIIIIIIIIII 2370	

Sumber : BSN

METODE

Kulit buah kakao (Theobroma cacao L), dikumpulkan dan dicuci dengan air, lalu dikeringkan dibawah sinar matahari selama satu minggu. Kulit buah kakao yang telah dikeringkan diambil secara acak dan dimasukkan kedalam wadah besar dan dipotong hingga ukurannya

menjadi lebih kecil. Selanjutnya Sampel dikarbonisasi menggunakan *furnace*, proses karbonisasi dengan variabel suhu 550° C; 600° C; 650° C; 700° C selama 2 jam. Arang yang terbentuk digiling sampai halus kemudian diayak menggunakan ayakan 40 mesh, setelah itu diambil 10 gram untuk masing-masing perlakuan. Selanjutnya 10 gram arang direndam dalam larutan dengan variasi konsentrasi bahan pengaktif asam fosfat yang digunakan 0,4 M; 0,6 M; 0,8 M; 1,0 M selama 8 jam pada suhu kamar. Setelah sampel selesai direndam kemudian disaring menggunakan kertas whatman. Sampel yang telah dihasilkan dicuci menggunakan natrium hidroksida dan aqades sampai netral . Selanjutnya Karbon diaktivasi thermal pada suhu 600° C selama 2 jam. Hasil berupa karbon aktif di uji kadar air, bilangan iodin dan pengujian.

HASIL DAN PEMBAHASAN

Perubahan kadar air kakao dan diambil kulitnya serta pengeringan dapat dilihat pade table 2. Kadar air kulit Kakao segar adalah 70,063 persen, sedangkan kadar air pada kulit kakao kering adalah 12,684%. Seperti terlihat pada Table 2.

Tabel 2. Data kadar air kulit buah kakao sebelum proses karbonisasi

No	Sampel	Kadar Air (%)
1	Kulit kakao segar basah	70,063
2	Kulit kakao kering setelah di keringkan	12,684

Proses karbonisasi menyebabkan terjadinya dekomposisi material organik kulit Kakao dan melepaskan zat yang mudah menguap. Sebagian besar unsur nom karbon akan terlepas ke udara. Ruang yang ditinggalkan oleh unsur-unsur non karbon ini membentuk pori, hanya saja volume pori dan luas permukaan yang terbentuk biasanyan masih kecil dibawah standard karbon aktif. Akibat terlepasnya unsur yang volatile, maka karbon yang dihasilkan mengalami penyusutan. Besarnya persetase penyusutan proses karbonisasi dapat dilihat pada Table 3. Prosentasi penyusutan massa kulit Kakao menjadi karbon berkisar antara 61,78 – 67, 24 %.

Tabel 3. Data massa awal, massa akhir dan % penyusutan dalam proses karbonisasi kulit Kakao

Temperatur Karbonisasi (°C)	Massa Awal (gram)	Massa Akhir (gram)	Massa yang Hilang (gram)	Penyusutan (%)
550	155,30	51,77	103,53	66,66
600	158,93	52,07	106,86	67,24
650	159,21	53,35	105,86	66,49
700	168,25	64,30	103,95	61,78

Hasil pengamatan fisik karbon dari kulit kakao pada berbagai temperature dapat dilihat pada Gambar 1.

Berikut ini merupakan data hasil kadar air kulit kakao setelah melalui proses karbonisasi dan aktivasi. Pada aktifasi karbon menjadi katbon aktif dengan aktifasi fisika pada temperature 550 € dan berbagai konsentrasi akifator diperoleh kadar air berkisar 2,121% -3,148%. Sedangkan penggunaan temperature 600,650 dan 700 menujukkan hasil karbon aktif dengan kadar air 0,730% - 2,643%. Hal ini menujukkan bahwa kadar air karbon aktif telah sesuai dengan Nasional Indonesia (SNI) 06-3730-1995 dengan nilai maksimal 15%. Hasil pengukuran kadar air yang diperoleh berkisar antara 0,73%-3,15% untuk standar SNI − 06-3730-1995 yaitu kurang dari 15%, Maka hasil kadar air dari penelitian kami sesuai standart SNI. Kadar air terendah terdapat pada karbon aktif yang diaktivasi dengan H3PO4 0,8 M dengan suhu 700 € yaitu sebesar 0,730%. Rendahnya

kadar air karena permukaan arang aktif lebih sedikit mengandung gugus fungsi yang bersifat polar sehingga interaksi antara uap air yang bersifat polar juga sedikit (Pari et al. 2008 dalam Fauziah 2009). Rendahnya kadar air juga menunjukkan bahwa zat menguap dan senyawa lainnya di dalam arang aktif kulit kakao lebih mudah lepas, sehingga luas permukaan karbon aktif semakin besar dan pori-pori arang semakin banyak. Untuk itu karbon aktif dari kulit buah kakao yang diaktivasi dengan H3PO4 0,8 M dengan suhu karbonisasi 700 € lebih baik digunakan sebagai adsorben dibanding karbon lainnya.

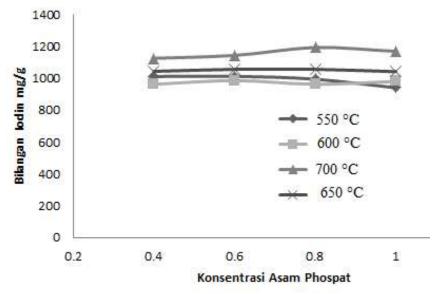
Gambar 1. Bentuk fisik hasil proses karbonisasi kulit Kakao (a) Suhu 550€ (b) Suhu 600€ (c) Suhu 650€ (d) Suhu 700€

Tabel 3. Data kadar air karbon aktif yang diaktifasi pada berbagai tempratur dan konsentrasi activator

Temperatur (C)	Konsentrasi Asam Fosfat (M)	Kadar Air %	Temperatur (ℂ)	Konsentrasi Asam Fosfat (M)	Kadar Air %
	0,4	2,753		0,4	2,643
550	0,6	3,148	650	0,6	1,060
330	0,8	2,121		0,8	1,992
	1	2,811		1	1,257
	0,4	2,125		0,4	2,386
600	0,6	1,953	700	0,6	1,195
	0,8	1,430	700	0,8	0,730
	1	1,262		1	1,637

Analisa bilangan iodin merupakan salah satu syarat untuk mengetahui daya serap iodin oleh karbon aktif. Sesuai persyaratan arang aktif Standar Nasional Indonesia (SNI) 06-3730-1995 bahwa nilai minimal bilangan iodin adalah 750 mg/g. Daya serapan iodin ini dipengaruhi oleh proses analisa yang dilakukan dari awal, terutama saat proses titrasi yang menggunakan larutan iodin. Larutan iodin sangat sensitif terhadap cahaya, sehingga harus diletakkan di wadah gelap ataupun digunakan dalam ruangan yang gelap pula.

Berikut ini merupakan data hasil pengujian bilangan iodin dapat dilihat pada Tabel 5. sebagai berikut :


Tabel 5 Data hasil pengujian bilangan iodin karbon aktif dari kulit kakao

Temperatur (€)	Konsentrasi Aktivasi Asam Fosfat (M)	Daya Serap Iodin (mg/g)	Temperatur (ℂ)	Konsentrasi Aktivasi Asam Fosfat (M)	Daya Serap Iodin (mg/g)
550	0,4	1.013,17	650	0,4	1.045,15

	0,6	1.014,69		0,6	1.058,85
	0,8	996,42		0,8	1.058,85
	1	942,12		1	1.043,63
	0,4	964,44	"	0,4	1.127,38
600	0,6	987,28	700	0,6	1.145,65
600	0,8	964,44	700	0,8	1.194,38
	1	982,71		1	1.171,54

Berdasarkan Gambar 2. nilai bilangan iodin untuk semua sampel berkisar antara 942,12-1.194,38 mg/g. Nilai bilangan iodin merupakan parameter penting dalam kemampuan karbon aktif dalam menyerap Iodium. Semakin tinggi temperature aktifasi meningkatkan nilai bilangan iodinnya karbon aktif. dan semakin tinggi konsentrasi aktivasi semakin tinggi pula nilai bilangan iodinnya. Nilai yang paling tinggi adalah sampel karbonisasi suhu 700€ dan konsentra si aktivasi H₃PO₄ 0,8 M sebesar 1.194,38 mg/g.

Sehingga dapat disajikan grafik hubungan antara suhu dan kadar aktivasi dengan bilangan iodin dapat di lihat pada gambar 2. sebagai berikut :

Gambar 2. Hubungan antara konsentrasi asam phospat terhadap bilangan iodinpada berbagai tempeartur aktifasi

Gambar 2. menunjukkan bahwa arang hasil karbonisasi mengalami kenaikan nilai daya serap iodin seiring dengan naiknya konsentrasi asam fosfat, dimana nilai bilangan iodin yang dihasilkan berada pada nilai 942,12 hingga 1.194,38 mg/g. Nilai daya serap iodin tertinggi terlihat pada aktivasi 0,8 M suhu karbonisasi 700°C. Sehingga dari keseluruhan data dapat disimpulkan bahwa karbon aktif dari kulit buah kakao dengan aktifasi asam fosfat memiliki daya serap yang cukup baik. Maka hasil ini telah memenuhi standar SNI dimana minimal bilangan iodin yang dihasilkan sebesar 750 mg/g.

Pengujian BET (Brenauer-Emmet-Teller)

Salah satu karakteristik karbon aktif berkualitas adalah memiliki luas permukaan yang tinggi. Semakin besar luas permukaan luas permukaan karbon aktif, semakin besar pula daya adsorpsinya. Luas permukaan suatu adsorben dapat diketahui dengan alat pengukur luas permukaan yang menggunakan prinsip metode BET.

Sampel terbaik yang diujikan BET adalah *sample* yang memiliki nilai bilangan iodin tertinggi, yaitu sample karbonisasi suhu 700° C dengan konsentrasi aktivasi 0,8 M. Berdasarkan